skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mandal, Amartya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 29, 2026
  2. Optical manipulation of nanoparticles (NPs) in liquid has garnered increasing interest for various applications, ranging from biological systems to nanofabrication. A plane wave as an optical source has recently been shown to be capable of pushing or pulling an NP when the NP is encapsulated by a nanobubble (NB) in water. However, the lack of an accurate model to describe the optical force on NP-in-NB systems hinders a comprehensive understanding of NP motion mechanisms. In this study, we present an analytical model using vector spherical harmonics to accurately capture the optical force and the resultant trajectory of an NP in an NB. We test the developed model using a solid Au NP as an example. By visualizing the vector field line of the optical force, we reveal the possible moving paths of the NP in the NB. This study can provide valuable insights for designing experiments to manipulate supercaviting NPs using plane waves. 
    more » « less